\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - прямоугольник;\]
\[BH\bot AC;\]
\[\frac{\angle ABH}{\angle CBH} = \frac{4}{5}.\]
\[Найти:\]
\[\angle DBH.\]
\[Решение.\]
\[1)\ ABCD - прямоугольник:\]
\[\angle B = \angle ABH + \angle CBH = 90{^\circ}\]
\[\frac{4}{5}\angle CBH + \angle CBH = 90{^\circ}\]
\[\frac{9}{5} \bullet \angle CBH = 90{^\circ}\ \ \ \]
\[\angle CBH = 50{^\circ}.\]
\[\angle ABH = \frac{4}{5} \bullet 50{^\circ} = 40{^\circ}.\]
\[AC = BD;\ \ \ \]
\[AO = BO = \frac{1}{2}\text{AC.}\]
\[2)\ В\ \mathrm{\Delta}ABH:\]
\[\angle AHB = 90{^\circ};\]
\[\angle BAH = 90{^\circ} - \angle ABH = 50{^\circ}.\]
\[3)\ \mathrm{\Delta}AOB - равнобедренный:\]
\[AO = BO.\]
\[Отсюда:\]
\[\angle ABO = \angle BAO = 50{^\circ};\]
\[\angle DBH = \angle ABO - \angle ABH = 10{^\circ}.\]
\[Ответ:\ \ 10{^\circ}.\]