\[Схематический\ рисунок.\]
\[Дано:\]
\[O - центр\ впис.\ окружности;\]
\[AA_{1},\ BB_{1},\ CC_{1} - высоты\ \mathrm{\Delta}ABC;\]
\[AA_{1} = h_{1};\]
\[BB_{1} = h_{2};\]
\[CC_{1} = h_{3}.\]
\[Доказать:\]
\[\frac{1}{h_{1}} + \frac{1}{h_{2}} + \frac{1}{h_{3}} = \frac{1}{r}.\]
\[Доказательство.\]
\[1)\ Пусть:\]
\[BC = a,\ \ \ \]
\[AC = b,\ \ \ \]
\[AB = c.\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[S = \frac{1}{2}ah_{1} = \frac{1}{2}bh_{2} = \frac{1}{2}ch_{3};\]
\[S = pr = \frac{1}{2}(a + b + c)\text{r.}\]
\[ah_{1} = bh_{2} = ch_{3} = (a + b + c)r;\]
\[\frac{a}{a + b + c} = \frac{r}{h_{1}};\]
\[\frac{b}{a + b + c} = \frac{r}{h_{2}};\]
\[\frac{c}{a + b + c} = \frac{r}{h_{3}};\]
\[\frac{r}{h_{1}} + \frac{r}{h_{2}} + \frac{r}{h_{3}} = \frac{a + b + c}{a + b + c} = 1\]
\[\frac{1}{h_{1}} + \frac{1}{h_{2}} + \frac{1}{h_{3}} = \frac{1}{r}.\]
\[Что\ и\ требовалось\ доказать.\]