\[Схематический\ рисунок.\]
\[Дано:\]
\[BD - высота;\]
\[CE - высота;\]
\[\angle A = \alpha;\]
\[BD = h_{1};\]
\[CE = h_{2}.\]
\[Найти:\]
\[S_{\text{ABC}}.\]
\[Решение.\]
\[S = \frac{1}{2}AC \bullet BD = \frac{1}{2}AC \bullet h_{1}\text{\ \ \ }\]
\[AC = \frac{2S}{h_{1}}.\]
\[S = \frac{1}{2}AB \bullet CE = \frac{1}{2}AB \bullet h_{2}\text{\ \ \ }\]
\[AB = \frac{2S}{h_{2}}.\]
\[S = \frac{1}{2}AB \bullet AC \bullet \sin{\angle A}.\]
\[\frac{2S^{2}}{h_{1}h_{2}} \bullet \sin\alpha = S\ \ \ \]
\[S = \frac{h_{1}h_{2}}{2\sin\alpha}.\]
\[Ответ:\ \ \frac{h_{1}h_{2}}{2\sin\alpha}.\]