\[Схематический\ рисунок.\]
\[Дано:\]
\[AC = b;\]
\[\angle A = \alpha;\]
\[\angle B = \beta.\]
\[Найти:\]
\[S_{\text{ABC}}.\]
\[Решение.\]
\[\angle C = 180{^\circ} - \angle A - \angle B;\]
\[\sin{\angle C} = \sin(\angle A + \angle B) =\]
\[= \sin(\alpha + \beta).\]
\[\frac{\text{AC}}{\sin{\angle B}} = \frac{\text{BC}}{\sin{\angle A}}\text{\ \ }\]
\[BC = \frac{AC \bullet \sin{\angle A}}{\sin{\angle B}} = \frac{b\sin\alpha}{\sin\beta}.\]
\[S_{\text{ABC}} = \frac{1}{2}AC \bullet BC\sin{\angle A} =\]
\[= \frac{b^{2}\sin\alpha\sin(\alpha + \beta)}{2\sin\beta}.\]
\[Ответ:\ \ \frac{b^{2}\sin\alpha\sin(\alpha + \beta)}{2\sin\beta}.\]