\[Схематический\ рисунок.\]
\[Дано:\]
\[BM - высота;\]
\[BM = h;\]
\[\angle A = \alpha;\]
\[\angle ABC = \beta.\]
\[Найти:\]
\[S_{\text{ABC}}.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABM:\]
\[\angle AMB = 90{^\circ};\ \ \ \]
\[AB = \frac{\text{BM}}{\sin{\angle A}} = \frac{h}{\sin\alpha}.\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[\angle C = 180{^\circ} - \angle A - \angle B;\]
\[\sin{\angle C} = \sin(\angle A + \angle B) = \sin(\alpha + \beta).\]
\[\frac{\text{AB}}{\sin{\angle C}} = \frac{\text{AC}}{\sin{\angle B}}\]
\[AC = \frac{AB \bullet \sin{\angle B}}{\sin{\angle C}} =\]
\[= \frac{h\sin\beta}{\sin\alpha\sin(\alpha + \beta)}.\]
\[S = \frac{1}{2}AC \bullet BM = \frac{h^{2}\sin\beta}{2\sin\alpha\sin(\alpha + \beta)}.\]
\[Ответ:\ \ \frac{h^{2}\sin\beta}{2\sin\alpha\sin(\alpha + \beta)}.\]