\[Схематический\ рисунок.\]
\[Дано:\]
\[R_{оп.\ окр.} = R;\]
\[\angle A = \alpha;\]
\[\angle B = \beta.\]
\[Найти:\]
\[S_{\text{ABC}}.\]
\[Решение.\]
\[\angle C = 180{^\circ} - \angle A - \angle B.\]
\[\sin{\angle C} = \sin(\angle A + \angle B)\]
\[\sin{\angle C} = \sin(\alpha + \beta).\]
\[AC = 2R \bullet \sin{\angle B} = 2R\sin\beta;\]
\[BC = 2R \bullet \sin{\angle A} = 2R\sin\alpha.\]
\[S = \frac{1}{2}AC \bullet BC \bullet \sin{\angle A} =\]
\[= 2R^{2}\sin\alpha\sin\beta\sin(\alpha + \beta).\]
\[Ответ:\ \ 2R^{2}\sin\alpha\sin\beta\sin(\alpha + \beta).\]