\[Схематический\ рисунок.\]
\[Дано:\]
\[BC = a;\]
\[\angle B = \beta;\]
\[\angle C = \gamma.\]
\[Найти:\]
\[S_{\text{ABC}}.\]
\[Решение.\]
\[\angle A = 180{^\circ} - \angle B - \angle C;\]
\[\sin{\angle A} = \sin(\angle B + \angle C) =\]
\[= \sin(\beta + \gamma).\]
\[\frac{\text{BC}}{\sin{\angle A}} = \frac{\text{AB}}{\sin{\angle C}}\]
\[AB = \frac{BC \bullet \sin{\angle C}}{\sin{\angle A}} = \frac{a\sin\gamma}{\sin(\beta + \gamma)}\]
\[S_{\text{ABC}} = \frac{1}{2}AB \bullet BC\sin{\angle B} =\]
\[= \frac{a^{2}\sin\beta\sin\gamma}{2\sin(\beta + \gamma)}.\]
\[Ответ:\ \ \frac{a^{2}\sin\beta\sin\gamma}{2\sin(\beta + \gamma)}.\]