\[Схематический\ рисунок.\]
\[Дано:\]
\[AD - биссектриса\ \angle A;\]
\[S_{\text{ABD}} = 12\ см^{2};\]
\[S_{\text{ACD}} = 20\ см^{2}.\]
\[Найти:\]
\[AB\ :AC.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle BAD = \angle CAD = \frac{1}{2}\angle A.\]
\[2)\ В\ \mathrm{\Delta}BAD:\]
\[S_{\text{ABD}} = \frac{1}{2}AB \bullet AD \bullet \sin{\angle BAD}\]
\[AB = \frac{24}{AD \bullet \sin\left( \frac{1}{2}\angle A \right)}.\]
\[3)\ В\ \mathrm{\Delta}CAD:\]
\[S_{\text{ACD}} = \frac{1}{2}AC \bullet AD \bullet \sin{\angle CAD}\]
\[AC = \frac{40}{AD \bullet \sin\left( \frac{1}{2}\angle A \right)}.\]
\[4)\ Отношение:\]
\[\frac{\text{AB}}{\text{AC}} = \frac{24}{40} = \frac{3}{5}.\]
\[Ответ:\ \ 3\ :5.\]