\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[CD - медиана;\]
\[\angle ACD = \alpha;\]
\[\angle BCD = \beta;\]
\[BC = a.\]
\[Найти:\]
\[\text{CD.}\]
\[Решение.\]
\[1)\ Дополнительное\ построение:\]
\[KD = CD;\ \ \ \]
\[K \in CD.\]
\[2)\ Рассмотрим\ CBKA:\]
\[CD = KD;\ \ \ \]
\[BD = AD.\]
\[Следовательно:\]
\[CBKA - параллелограмм.\]
\[Отсюда:\]
\[\angle BCA = \angle BCK + \angle ACK = \alpha + \beta;\]
\[AK = BC = a;\ \ \ \]
\[\angle CAK = 180{^\circ} - \angle BCA;\]
\[\sin{\angle CAK} = \sin{\angle BCA} =\]
\[= \sin(\alpha + \beta).\]
\[3)\ В\ \mathrm{\Delta}ACK:\]
\[\frac{\text{CK}}{\sin{\angle CAK}} = \frac{\text{AK}}{\sin{\angle ACK}}\]
\[CK = \frac{AK \bullet \sin{\angle CAK}}{\sin{\angle ACK}} =\]
\[= \frac{a\sin(\alpha + \beta)}{\sin\alpha};\]
\[CD = \frac{1}{2}CK = \frac{a\sin(\alpha + \beta)}{2\sin\alpha}.\]
\[Ответ:\ \ \frac{a\sin(\alpha + \beta)}{2\sin\alpha}.\]