\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[AA_{1},\ BB_{1},\ CC_{1} - высоты\ \mathrm{\Delta}ABC;\]
\[AA_{1} \cap BB_{1} = H.\]
\[Доказать:\]
\[R_{\text{AHB}} = R_{\text{BHC}} = R_{\text{AHC}} = R_{\text{ABC}}.\]
\[Доказательство.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle C = 180{^\circ} - \angle A - \angle B;\]
\[\sin{\angle C} = \sin(\angle A + \angle B);\]
\[R_{\text{ABC}} = \frac{\text{AB}}{2\sin{\angle C}} = \frac{\text{AB}}{2\sin(\angle A + \angle B)}.\]
\[2)\ В\ \mathrm{\Delta}AHB:\]
\[\angle AA_{1}B = 90{^\circ};\ \ \ \]
\[\angle BAH = 90{^\circ} - \angle B;\]
\[\angle BB_{1}A = 90{^\circ};\ \ \ \]
\[\angle ABH = 90{^\circ} - \angle A;\]
\[\angle AHB = 180{^\circ} - \angle BAH - \angle ABH;\]
\[\angle AHB = \angle A + \angle B.\]
\[R_{\text{AHB}} = \frac{\text{AB}}{2\sin{\angle AHB}} =\]
\[= \frac{\text{AB}}{2\sin(\angle A + \angle B)}.\]
\[3)\ Аналогично:\]
\[R_{\text{ABC}} = R_{\text{BHC}} = \frac{\text{BC}}{2\sin(\angle B + \angle C)};\]
\[R_{\text{ABC}} = R_{\text{AHC}} = \frac{\text{AC}}{2\sin(\angle A + \angle C)}.\]
\(Что\ и\ требовалось\ доказать.\)