\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[AM - медиана;\]
\[\angle MAB = \alpha;\]
\[\angle MAC = \beta;\]
\[AM = m.\]
\[Найти:\]
\[AB;\ AC.\]
\[Решение.\]
\[1)\ Дополнительное\ построение:\]
\[MK = AM;\ \ \ \]
\[K \in AM.\]
\[2)\ Четырехугольник\ ABKC:\]
\[AM = MK;\ \ \]
\[BM = MC.\]
\[Следовательно:\]
\[ABKC - параллелограмм.\]
\[Отсюда:\]
\[\angle BAC = \angle BAK + \angle CAK = \alpha + \beta;\]
\[CK = AB;\ \ \ \]
\[\angle ACK = 180{^\circ} - \angle BAC.\]
\[\sin{\angle ACK} = \sin{\angle BAC} =\]
\[= \sin(\alpha + \beta).\]
\[3)\ В\ \mathrm{\Delta}ACK:\]
\[\angle AKC = 180{^\circ} - \angle ACK - \angle CAK =\]
\[= \angle BAC - \angle CAK = \alpha;\]
\[AK = 2AM = 2m.\]
\[\frac{\text{AK}}{\sin{\angle ACK}} = \frac{\text{CK}}{\sin{\angle CAK}} =\]
\[= \frac{\text{AC}}{\sin{\angle AKC}};\]
\[AB = CK = \frac{AK \bullet \sin{\angle CAK}}{\sin{\angle ACK}} =\]
\[= \frac{2m\sin\beta}{\sin(\alpha + \beta)};\]
\[AC = \frac{AK \bullet \sin{\angle AKC}}{\sin{\angle ACK}} =\]
\[= \frac{2m\sin\alpha}{\sin(\alpha + \beta)}.\]
\[Ответ:\ \ \frac{2m\sin\beta}{\sin(\alpha + \beta)};\ \frac{2m\sin\alpha}{\sin(\alpha + \beta)}.\]