\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[CD - биссектриса\ \angle C;\]
\[DE \parallel BC;\ \]
\[AE = a;\]
\[\angle A = \alpha;\ \]
\[\angle B = \beta.\]
\[Найти:\]
\[\text{CE.}\]
\[Решение.\]
\[1)\ Четырехугольник\ CEDB:\]
\[\angle DEC = 180{^\circ} - \angle BCE;\]
\[\angle DCE = \frac{1}{2}\angle BCE.\]
\[2)\ В\ \mathrm{\Delta}DEC:\]
\[\angle CDE = 180{^\circ} - \angle DEC - \angle DCE =\]
\[= \angle BCE - \frac{1}{2}\angle BCE = \frac{1}{2}\angle BCE.\]
\[Следовательно,\ \mathrm{\Delta}DEC -\]
\[равнобедренный:\]
\[DE = CE.\]
\[3)\ Для\ прямых\ \text{DE\ }и\ \text{BC\ }и\ \]
\[секущей\ AB:\]
\[\angle ADE = \angle ABC = \beta -\]
\[соответственные.\]
\[4)\ В\ \mathrm{\Delta}ADE:\]
\[\frac{\text{DE}}{\sin{\angle A}} = \frac{\text{AE}}{\sin{\angle ADE}};\]
\[CE = DE = \frac{AE \bullet \sin{\angle A}}{\sin{\angle ADE}} = \frac{a\sin\alpha}{\sin\beta}.\]
\[Ответ:\ \ \frac{a\sin\alpha}{\sin\beta}.\]