\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - трапеция;\]
\[AB = CD;\]
\[BC = 9\ см;\]
\[AD = 21\ см;\]
\[BH - высота;\]
\[BH = 8\ см.\]
\[Найти:\]
\[R_{опис.\ окр}.\]
\[Решение:\]
\[1)\ Рассмотрим\ ABCD:\]
\[AH = \frac{1}{2}(AD - BC) =\]
\[= \frac{21 - 9}{2} = 6\ см.\]
\[2)\ В\ \mathrm{\Delta}ABH:\]
\[\angle AHB = 90{^\circ};\ \ \]
\[AB = \sqrt{AH^{2} + BH^{2}} =\]
\[= \sqrt{36 + 64} = \sqrt{100} = 10\ см.\]
\[\sin{\angle A} = \frac{\text{BH}}{\text{AB}} = \frac{8}{10} = \frac{4}{5}.\]
\[3)\ В\ \mathrm{\Delta}ABD:\]
\[\cos{\angle A} = \sqrt{1 - \sin^{2}{\angle A}} =\]
\[= \sqrt{1 - \frac{16}{25}} = \frac{3}{5};\]
\[BD^{2} = AB^{2} + AD^{2} - 2AB \bullet AD \bullet \cos{\angle A} =\]
\[= 100 + 441 - 2 \bullet 10 \bullet 21 \bullet \frac{3}{5} =\]
\[= 541 - 252 = 289.\ \ \]
\[BD = 17\ см.\]
\[R = \frac{\text{BD}}{2\sin{\angle A}} = \frac{17}{2}\ :\frac{4}{5} = \frac{17}{2} \bullet \frac{5}{4} =\]
\[= \frac{85}{8}\ см = 10,625\ см.\]
\[Ответ:\ \ 10,625\ см.\]