\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[AD - биссектриса\ \angle A.\]
\[Доказать:\]
\[\frac{\text{BD}}{\text{AB}} = \frac{\text{CD}}{\text{AC}}.\]
\[Доказательство.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle BAD = \angle CAD = \frac{1}{2}\angle A.\]
\[2)\ В\ \mathrm{\Delta}ABD:\]
\[\angle CDA = 180{^\circ} - \angle BDA;\]
\[\sin{\angle CDA} = \sin{\angle BDA}.\]
\[\frac{\text{AB}}{\sin{\angle BDA}} = \frac{\text{BD}}{\sin{\angle BAD}}\]
\[\frac{\text{BD}}{\text{AB}} = \frac{\sin{\angle BAD}}{\sin{\angle BDA}} = \frac{\sin\left( \frac{1}{2}\angle A \right)}{\sin{\angle BDA}}.\]
\[3)\ В\ \mathrm{\Delta}ACD:\]
\[\frac{\text{AC}}{\sin{\angle CDA}} = \frac{\text{CD}}{\sin{\angle CAD}}\]
\[\frac{\text{CD}}{\text{AC}} = \frac{\sin{\angle CAD}}{\sin{\angle CDA}} = \frac{\sin\left( \frac{1}{2}\angle A \right)}{\sin{\angle BDA}}\]
\[CD\ :AC = BD\ :AB.\]
\[Что\ и\ требовалось\ доказать.\]