\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равнобедренный;\]
\[AD - биссектриса\ \angle A;\]
\[AC = a;\ \]
\[\angle B = \alpha.\]
\[Найти:\]
\[\text{AD.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle A = \angle C = \frac{180{^\circ} - \angle B}{2} = 90{^\circ} - \frac{\alpha}{2};\]
\[\angle BAD = \angle CAD = \frac{1}{2}\angle A = 45{^\circ} - \frac{\alpha}{4};\]
\[\sin{\angle C} = \cos\frac{\alpha}{2}.\]
\[\frac{\text{AC}}{\sin{\angle B}} = \frac{\text{AB}}{\sin{\angle C}}\]
\[AB = \frac{AC \bullet \sin{\angle C}}{\sin{\angle B}} = \frac{a\cos\frac{\alpha}{2}}{\sin\alpha}.\]
\[2)\ В\ \mathrm{\Delta}ABD:\]
\[\angle BDA = 180{^\circ} - \angle BAD - \angle B =\]
\[= 180{^\circ} - \left( 45{^\circ} + \frac{3\alpha}{4} \right);\]
\[\sin{\angle BDA} = \sin\left( 45{^\circ} + \frac{3\alpha}{4} \right).\]
\[\frac{\text{AB}}{\sin{\angle BDA}} = \frac{\text{AD}}{\sin{\angle B}}\]
\[AD = \frac{AB \bullet \sin{\angle B}}{\sin{\angle BDA}} =\]
\[= \frac{a\cos\frac{\alpha}{2}}{\sin\left( 45{^\circ} + \frac{3\alpha}{4} \right)}.\]
\[Ответ:\ \ \frac{a\cos\frac{\alpha}{2}}{\sin\left( 45{^\circ} + \frac{3\alpha}{4} \right)}.\]