\[Схематический\ рисунок.\]
\[Дано:\]
\[BD - биссектриса\ \angle B;\]
\[\angle A = \alpha;\ \]
\[\angle C = \gamma;\]
\[AC = b.\]
\[Найти:\]
\[\text{BD.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle B = 180{^\circ} - \angle A - \angle C =\]
\[= 180{^\circ} - \alpha - \gamma;\]
\[\sin{\angle B} = \sin(180{^\circ} - \alpha - \gamma) =\]
\[= \sin(\alpha + \gamma);\]
\[\frac{\text{AB}}{\sin{\angle C}} = \frac{\text{AC}}{\sin{\angle B}}\]
\[AB = \frac{AC \bullet \sin{\angle C}}{\sin{\angle B}} = \frac{b\sin\gamma}{\sin(\alpha + \gamma)};\]
\[\angle DBC = \frac{1}{2}\angle B = 90{^\circ} - \frac{1}{2}(\alpha + \gamma).\]
\[2)\ В\ \mathrm{\Delta}BDC:\]
\[\angle BDA = \angle DBC + \angle ACB;\]
\[\angle BDA = 90{^\circ} - \frac{1}{2}(\alpha + \gamma) + \gamma =\]
\[= 90{^\circ} - \frac{\alpha - \gamma}{2};\]
\[\sin{\angle BDA} = \cos\frac{\alpha - \gamma}{2}.\]
\[3)\ В\ \mathrm{\Delta}ABD:\]
\[\frac{\text{AB}}{\sin{\angle BDA}} = \frac{\text{BD}}{\sin{\angle A}}\]
\[BD = \frac{AB \bullet \sin{\angle A}}{\sin{\angle BDA}} =\]
\[= \frac{b\sin\alpha\sin\gamma}{\sin(\alpha + \gamma)\cos\frac{\alpha - \gamma}{2}}.\]
\[Ответ:\ \ \frac{b\sin\alpha\sin\gamma}{\sin(\alpha + \gamma)\cos\frac{\alpha - \gamma}{2}}.\]