Решебник по геометрии 8 класс Атанасян ФГОС Задание 791

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 791

Выбери издание
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
 
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{791.}\mathbf{ОК}\mathbf{\ }\mathbf{ГДЗ}\mathbf{-}\mathbf{домашка}\mathbf{\ }\mathbf{на}\ 5}\]

\[Рисунок\ по\ условию\mathbf{\ задачи:}\]

\[\mathbf{Дано:}\]

\[ABCD - четырехугольник;\]

\[\text{BN} = \text{NC};\text{CF} = \text{FD};\ \]

\[BE = EA;AM = MD;\]

\[EF \cap NM = 0.\]

\[\mathbf{Доказать:}\]

\[NO = OM;\ \ \]

\[EO = OF.\]

\[\mathbf{Доказательство.}\]

\[1) - \overrightarrow{\text{EA}} + \overrightarrow{\text{AM}} + \overrightarrow{\text{MD}} + \overrightarrow{\text{DF}} =\]

\[= \overrightarrow{\text{EO}} + \overrightarrow{\text{OF}}\]

\[- \overrightarrow{\text{EA}} + \overrightarrow{\text{AM}} + \overrightarrow{\text{MO}} = \overrightarrow{\text{EO}}\]

\[- \overrightarrow{\text{EA}} + 2\overrightarrow{\text{AM}} + \overrightarrow{\text{DF}} = \overrightarrow{\text{EO}} + \overrightarrow{\text{OF}}\]

\[- \overrightarrow{\text{EA}} + \overrightarrow{\text{AM}} + \overrightarrow{\text{EO}} = \overrightarrow{\text{EO}}\text{.\ }\]

\[2) - \overrightarrow{\text{MA}} + \overrightarrow{\text{AE}} + \overrightarrow{\text{EB}} + \overrightarrow{\text{BN}} =\]

\[= \overrightarrow{\text{MO}} + \overrightarrow{\text{ON}}\]

\[- \overrightarrow{\text{MA}} + \overrightarrow{\text{AE}} + \overrightarrow{\text{EO}} = \overrightarrow{\text{MO}}\]

\[- \overrightarrow{\text{MA}} + 2\overrightarrow{\text{AE}} + \overrightarrow{\text{BN}} = \overrightarrow{\text{MO}} + \overrightarrow{\text{ON}}\]

\[- \overrightarrow{\text{MA}} + \overrightarrow{\text{AE}} + \overrightarrow{\text{EO}} = \overrightarrow{\text{MO}}.\]

\[3)\ Выразим\ \overrightarrow{\text{EO}}\text{\ \ }и\ \ \ \overrightarrow{\text{MO}};\]

\[подставим:\]

\[- \overrightarrow{\text{EA}} + 2\overrightarrow{\text{AM}} + \overrightarrow{\text{DF}} =\]

\[= - \overrightarrow{\text{EA}} + \overrightarrow{\text{AM}} + \overrightarrow{\text{MO}} + \overrightarrow{\text{OF}}\]

\[- \overrightarrow{\text{MA}} + 2\overrightarrow{\text{AE}} + \overrightarrow{\text{BN}} =\]

\[= - \overrightarrow{\text{MA}} + \overrightarrow{\text{AE}} + \overrightarrow{\text{EO}} + \overrightarrow{\text{ON}}.\]

\[Получим:\]

\[\overrightarrow{\text{AM}} + \overrightarrow{\text{DF}} = \overrightarrow{\text{MO}} + \overrightarrow{\text{OF}}\]

\[\overrightarrow{\text{AE}} + \overrightarrow{\text{BN}} = \overrightarrow{\text{EO}} + \overrightarrow{\text{ON}}.\]

\[4)\ Запишем\ выражения:\]

\[2\overrightarrow{\text{AM}} + 2\overrightarrow{\text{DF}} = \overrightarrow{\text{AC}}\]

\[2\overrightarrow{\text{AE}} + 2\overrightarrow{\text{BN}} = \overrightarrow{\text{AC}}\]

\[Получим\ равенство:\]

\[\overrightarrow{\text{AM}} + \overrightarrow{\text{DF}} = \overrightarrow{\text{AE}} + \overrightarrow{\text{BN}}.\]

\[Следовательно:\]

\[\overrightarrow{\text{MO}} + \overrightarrow{\text{OF}} = \overrightarrow{\text{EO}} + \overrightarrow{\text{ON}}\]

\[\overrightarrow{\text{MO}} - \overrightarrow{\text{ON}} = \overrightarrow{\text{EO}} - \overrightarrow{\text{OF}}.\]

\[5)\ Так\ как\ \ \overrightarrow{\text{MO}} \nearrow \nearrow \overrightarrow{\text{ON}};\ \]

\[\overrightarrow{\text{EO}} \nearrow \nearrow \overrightarrow{\text{OF}};\ EO;OF\ \ и\ \ MO;ON;\ \ \ \]

\[то\ не\ \ коллинеарные:\]

\[NO = OM;\ \ EO = OF.\]

\[\mathbf{Что\ и\ требовалось\ доказать.}\]

Издание 2
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{791.еуроки - ответы\ на\ пятёрку}}\]

\[\mathbf{а)\ Доказать:}\]

\[\mathbf{вокруг\ любого\ }\]

\[\mathbf{прямоугольника\ }\mathbf{можно\ }\]

\[\mathbf{описать\ окружность}\mathbf{.}\]

\[\mathbf{Доказательство.}\]

\[1)\ По\ свойству\ \]

\[прямоугольника\ все\ его\ углы\ \]

\[равны\ 90{^\circ}.\]

\[2)\ Для\ того,\ чтобы\ вокруг\ \]

\[четырехугольника\ описать\ \]

\[окружность,должно\ \]

\[выполняться\ следующее\ \]

\[условие:\]

\[суммы\ противоположных\ \]

\[углов\ равны.\]

\[3)\ Так\ как\ все\ углы\ \]

\[четырехугольника\ равны,\ то\ \]

\[и\ суммы\ противоположных\ \]

\[углов\ равны,\ следовательно\ \]

\[вокруг\ любого\ \mathbf{\ }\]

\[\mathbf{прямоугольника\ можно\ }\]

\[\mathbf{описать\ окружность}\mathbf{.}\]

\(\mathbf{Что\ и\ требовалось\ доказать.}\)

\[\mathbf{б)\ Доказать:}\]

\[\mathbf{вокруг\ любой\ }\]

\[\mathbf{равнобедренной\ трапеции\ }\]

\[\mathbf{можно\ описать\ окружность.}\]

\[\mathbf{Доказательство.}\]

\[1)\ По\ свойству\ \]

\[равнобедренной\ трапеции\ \]

\[сумма\ противоположных\]

\[углов\ равна\ 180{^\circ}.\]

\[2)\ Для\ того,\ чтобы\ вокруг\ \]

\[четырехугольника\ описать\ \]

\[окружность,должно\ \]

\[выполняться\ следующее\ \]

\[условие:\]

\[суммы\ противоположных\ \]

\[углов\ равны.\]

\[3)\ Так\ как\ условие\ \]

\[выполняется,\ то\ вокруг\ любой\ \]

\[равнобедренной\ трапеции\ \]

\[можно\ описать\ окружность.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам