\[Схематический\ рисунок.\]
\[Дано:\]
\[MNKP - прямоугольник;\]
\[AD - высота;\]
\[BC = 72\ см;\]
\[AD = 24\ см;\]
\[MP\ :MN = 9\ :5.\]
\[Найти:\]
\[MN;\ MP.\]
\[Решение.\]
\[1)\ MNKP - прямоугольник:\]
\[MP \parallel NK;\]
\[\angle M = 90{^\circ};\]
\[NK = MP = 1,8MN.\]
\[2)\ Для\ BC\ и\ NK\ и\ секущей\ AB:\]
\[\angle ABC = \angle ANK.\]
\[3)\ \mathrm{\Delta}ANK\sim\mathrm{\Delta}ABC - первый\ \]
\[признак:\]
\[\angle NAK = \angle BAC;\]
\[\angle ANK = \angle ABC.\]
\[Отсюда:\]
\[\frac{\text{NK}}{\text{BC}} = \frac{\text{AN}}{\text{AB}}\]
\[AB = \frac{BC \bullet AN}{\text{NK}}\]
\[AB = \frac{72 \bullet AN}{1,8 \bullet MN} = \frac{40 \bullet AN}{\text{MN}}.\]
\[4)\ \mathrm{\Delta}ABD\sim\mathrm{\Delta}NBM - первый\ \]
\[признак:\]
\[\angle ABD = \angle NBM;\]
\[\angle ADB = \angle NMB.\]
\[Отсюда:\]
\[\frac{\text{NM}}{\text{AD}} = \frac{\text{NB}}{\text{AB}}\]
\[AB = \frac{AD \bullet BN}{\text{MN}}\]
\[AB = \frac{24 \bullet (AB - AN)}{\text{MN}}.\]
\[5)\ \frac{40 \bullet AN}{\text{MN}} = \frac{24 \bullet (AB - AN)}{\text{MN}}\]
\[5AN = 3AB - 3AN\]
\[8AN = 3AB\]
\[\frac{\text{AN}}{\text{AB}} = \frac{3}{8}.\]
\[MN = \frac{40 \bullet AN}{\text{AB}} = \frac{40 \bullet 3}{8} = 15\ см.\]
\[MP = 1,8 \bullet 15 = 27\ см.\]
\[Ответ:\ \ 15\ см;\ 27\ см.\]