\[Схематический\ рисунок.\]
\[Дано:\]
\[EHGF - квадрат;\]
\[BD - высота;\]
\[AC = a;\]
\[BD = h.\]
\[Найти:\]
\[\text{HE.}\]
\[Решение.\]
\[1)\ EHGF - квадрат:\]
\[EF \parallel HG;\]
\[\angle E = 90{^\circ};\ \ \]
\[HG = HE.\]
\[2)\ \mathrm{\Delta}AEH\sim\mathrm{\Delta}ADB - первый\ \]
\[признак:\]
\[\angle HAE = \angle BAD;\]
\[\angle AEH = \angle ADB.\]
\[Отсюда:\]
\[\frac{\text{HE}}{\text{BD}} = \frac{\text{AH}}{\text{AB}}\]
\[HE = \frac{BD \bullet AH}{\text{AB}}\]
\[HE = \frac{h \bullet AH}{\text{AB}}.\]
\[3)\ Для\ AC\ и\ HG\ и\ секущей\ AB:\]
\[\angle CAB = \angle GHB.\]
\[4)\ \mathrm{\Delta}HBG\sim\mathrm{\Delta}ABC - первый\ \]
\[признак:\]
\[\angle CAB = \angle GHB;\]
\[\angle ABC = \angle HBG.\]
\[Отсюда:\]
\[\frac{\text{HG}}{\text{AC}} = \frac{\text{HB}}{\text{AB}}\]
\[HG = \frac{AC \bullet HB}{\text{AB}}\]
\[HG = \frac{a \bullet HB}{\text{AB}}.\]
\[5)\ \frac{h \bullet AH}{\text{AB}} = \frac{a \bullet HB}{\text{AB}}\]
\[h \bullet AH = a \bullet HB\]
\[h \bullet (AB - HB) = a \bullet HB\]
\[h \bullet AB - h \bullet HB = a \bullet HB\]
\[h \bullet AB = (a + h) \bullet HB\]
\[\frac{\text{HB}}{\text{AB}} = \frac{h}{a + h}\text{\ \ \ }\]
\[HE = \frac{\text{ah}}{a + h}.\]
\[Ответ:\ \ \frac{\text{ah}}{a + h}.\]