\[\boxed{\mathbf{48.\ }еуроки - ответы\ на\ пятёрку}\]
\[Пусть\ a,\ b,\ c,\ d - углы\ \]
\[параллелограмма.\]
\[По\ определению:\]
\[\angle a = \angle c;\ \ \ \angle b = \angle d.\]
\[1)\ \angle a + \angle c = 100{^\circ}:\]
\[\angle a + \angle a = 100{^\circ}\]
\[2\angle a = 100{^\circ}\]
\[\angle a = 50{^\circ}.\]
\[\angle a + \angle b = 180{^\circ}\]
\[50{^\circ} + \angle b = 180{^\circ}\]
\[\angle b = 130{^\circ}.\]
\[Ответ:\ \ 50{^\circ};\ 130{^\circ}.\]
\[2)\ \angle b - \angle a = 20{^\circ}:\]
\[\angle b = 20{^\circ} + \angle a\]
\[\angle a + \angle b = 180{^\circ}\]
\[\angle a + 20{^\circ} + \angle a = 180{^\circ}\]
\[2\angle a = 160{^\circ}\]
\[\angle a = 80{^\circ}.\]
\[\angle b = 20{^\circ} + 80{^\circ} = 100{^\circ}.\]
\[Ответ:\ \ 80{^\circ};\ 100{^\circ}.\]
\[3)\ \angle a\ :\angle b = 3\ :7:\]
\[\angle a + \angle b = 180{^\circ}\]
\[\frac{3}{7}\angle b + \angle b = 180{^\circ}\]
\[3\angle b + 7\angle b = 1260{^\circ}\]
\[10\angle b = 1260{^\circ}\]
\[\angle b = 126{^\circ}.\]
\[\angle a = \frac{3}{7} \bullet 126{^\circ} = 54{^\circ}.\]
\(Ответ:\ \ 54{^\circ};\ 126{^\circ}.\)