\[Схематический\ рисунок.\]
\[Дано:\]
\[\angle B = 90{^\circ};\]
\[AC = 20\ см;\]
\[BC = 16\ см;\]
\[AE = CE;\]
\[EF\bot AC.\]
\[Найти:\]
\[BF;\ CF.\]
\[Решение.\]
\[\mathrm{\Delta}ABC\sim\mathrm{\Delta}FEC - первый\ \]
\[признак:\]
\[\angle ACB = \angle FCE;\]
\[\angle ABC = \angle FEC = 90{^\circ}.\]
\[Отсюда:\]
\[\frac{\text{FC}}{\text{AC}} = \frac{\text{CE}}{\text{BC}}\]
\[CE = \frac{1}{2}AC = 10\ см.\]
\[FC = \frac{AC \bullet CE}{\text{BC}} = \frac{20 \bullet 10}{16} = 12,5\ см.\]
\[BF = BC - FC = 3,5\ см.\]
\[Ответ:\ \ 3,5\ см;\ 12,5\ см.\]