\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC\sim\mathrm{\Delta}A_{1}B_{1}C_{1};\]
\[BD - высота;\]
\[B_{1}D_{1} - высота.\]
\[Доказать:\]
\[\frac{\text{BD}}{B_{1}D_{1}} = \frac{\text{AB}}{A_{1}B_{1}}.\]
\[Доказательство.\]
\[1)\ \mathrm{\Delta}ABC\sim\mathrm{\Delta}A_{1}B_{1}C_{1}:\]
\[\angle A = \angle A_{1}.\]
\[2)\ \mathrm{\Delta}ABD\sim\mathrm{\Delta}A_{1}B_{1}D_{1} - первый\ \]
\[признак:\]
\[\angle BAD = \angle B_{1}A_{1}D_{1};\]
\[\angle ADB = \angle A_{1}D_{1}B_{1} = 90{^\circ}.\]
\[Отсюда:\]
\[\frac{\text{BD}}{B_{1}D_{1}} = \frac{\text{AB}}{A_{1}B_{1}} = \frac{\text{BC}}{B_{1}C_{1}} = \frac{\text{AC}}{A_{1}C_{1}} = k.\]
\[Что\ и\ требовалось\ доказать.\]