\[Схематический\ рисунок.\]
\[Дано:\]
\[O - центр\ окружности;\]
\[AC - касательная;\]
\[AD\ :BD = 1\ :2;\]
\[O \in AB.\]
\[Найти:\]
\[1)\ \mathrm{\Delta}ABC;\]
\[2)\ \mathrm{\Delta}BCD.\]
\[Решение.\]
\[1)\ Окружность:\]
\[BO = CO = DO = R;\]
\[AC - касательная;\]
\[\angle OCA = 90{^\circ};\]
\[BD - диаметр;\]
\[\angle BCD = 90{^\circ}.\]
\[2)\ \mathrm{\Delta}OCA - прямоугольный:\]
\[AD = \frac{1}{2}BD = \frac{1}{2}(DO + BO) =\]
\[= \frac{1}{2}(R + R) = R;\]
\[AO = AD + DO = R + R = 2R\]
\[CO = \frac{1}{2}\text{AO.\ \ \ }\]
\[\angle OAC = 30{^\circ};\]
\[\angle COA = 90{^\circ} - \angle OAC = 60{^\circ}.\]
\[3)\ \mathrm{\Delta}BOC - \ равнобедренный:\]
\[\angle OBC = \angle OCB;\]
\[\angle COB = 180{^\circ} - \angle COA = 120{^\circ}\]
\[\angle OBC + \angle OCB + \angle COB = 180{^\circ}\]
\[\angle OBC + \angle OBC + 120{^\circ} = 180{^\circ}\]
\[2\angle OBC = 60{^\circ}\ \ \]
\[\angle OBC = 30{^\circ}.\]
\[4)\ В\ \mathrm{\Delta}ABC:\]
\[\angle ACB = \angle ACO + \angle BCO =\]
\[= 90{^\circ} + 30{^\circ} = 120{^\circ}.\]
\[5)\ В\ \mathrm{\Delta}BCD:\]
\[\angle BDC + \angle DBC + \angle BCD = 180{^\circ}\]
\[\angle BDC + 30{^\circ} + 90{^\circ} = 180{^\circ}\]
\[\angle BDC = 60{^\circ}.\]
\[Ответ:\ \ 1)\ 30{^\circ};\ 30{^\circ};\ 120{^\circ};\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2)\ 30{^\circ};\ 60{^\circ};\ 90{^\circ}.\]