\[Схематический\ рисунок.\]
\[Дано:\]
\[\angle ABC = 120{^\circ};\]
\[AB = 8\ см;\]
\[BC = 12\ см;\]
\[BD - биссектриса\ \angle B.\]
\[Найти:\]
\[\text{BD.}\]
\[Решение.\]
\[1)\ Проведем\ прямую:\]
\[AE \parallel BD;\ \ \ \]
\[AE \cap BC = E.\]
\[2)\ Для\ \text{AE\ }и\ \text{BD\ }и\ секущей\ AB:\]
\[\angle EAB = \angle ABD = \frac{1}{2}\angle B = 60{^\circ}.\]
\[3)\ \mathrm{\Delta}EBA - равносторонний:\]
\[\angle EBA = 180{^\circ} - \angle ABC = 60{^\circ};\]
\[\angle AEB = 180{^\circ} - 60{^\circ} - 60{^\circ} = 60{^\circ};\]
\[\angle EBA = \angle EAB = \angle AEB.\]
\[Отсюда:\]
\[EB = AE = AB = 8\ см.\]
\[4)\ \mathrm{\Delta}AEC\sim\mathrm{\Delta}DBC:\]
\[BD \parallel AE.\]
\[Значит:\]
\[EC = EB + BC = 20\ см.\]
\[5)\ \frac{\text{BD}}{\text{AE}} = \frac{\text{BC}}{\text{EC}}\text{\ \ \ }\]
\[\frac{\text{BD}}{8} = \frac{12}{20}\text{\ \ \ }\]
\[BD = 4,8\ см.\]
\[Ответ:\ \ 4,8\ см.\]