\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равнобедренный;\]
\[P_{\text{ABC}} = 48\ см;\]
\[BH - высота;\]
\[BO = OH;\]
\[EF \parallel BC.\]
\[Найти:\]
\[P_{\text{AEF}}.\]
\[Решение.\]
\[1)\ \mathrm{\Delta}ABC - равнобедренный:\]
\[AB = BC.\]
\[BH - высота\ и\ медиана:\]
\[AH = CH = \frac{1}{2}\text{AC.}\]
\[2)\ В\ \mathrm{\Delta}BHC:\]
\[BO = OH;\ \ \]
\[OF \parallel BC;\]
\[HF = FC = \frac{1}{2}HC = \frac{1}{4}\text{AC.}\]
\[3)\ \mathrm{\Delta}AEF\sim\mathrm{\Delta}ABC:\]
\[EF \parallel BC.\]
\[Значит:\]
\[AF = AH + HF = \frac{3}{4}\text{AC.}\]
\[4)\ \frac{\text{AE}}{\text{AB}} = \frac{\text{EF}}{\text{BC}} = \frac{\text{AF}}{\text{AC}} = \frac{3}{4};\]
\[P_{\text{AEF}} = AE + EF + AF =\]
\[= \frac{3}{4}AB + \frac{3}{4}BC + \frac{3}{4}AC =\]
\[= \frac{3}{4}(AB + BC + AC) =\]
\[= \frac{3}{4}P_{\text{ABC}} = \frac{3}{4} \bullet 48 = 36\ см.\]
\[Ответ:\ \ 36\ см.\]