\[a,\ b,\ c - стороны\ данного\ \mathrm{\Delta},\]
\[a^{'},\ b^{'},\ c^{'} - стороны\ подобного\ \mathrm{\Delta}:\]
\[a = 15\ см;b = 25\ см;c = 35\ см.\]
\[1)\ p^{'} = 45\ см:\]
\[p = a + b + c = 75;\]
\[p^{'} = a^{'} + b^{'} + c^{'} = 45.\]
\[\frac{a^{'}}{a} = \frac{b^{'}}{b} = \frac{c^{'}}{c} = k:\]
\[a^{'} = ak;\ \ \ \]
\[b^{'} = bk;\ \ \ \]
\[c^{'} = ck.\]
\[\frac{p^{'}}{p} = \frac{ak + bk + ck}{a + b + c} = k;\]
\[k = \frac{45}{75} = \frac{3}{5}.\]
\[a^{'} = \frac{3}{5} \bullet 15 = 9\ см.\]
\[b^{'} = \frac{3}{5} \bullet 25 = 15\ см.\]
\[c^{'} = \frac{3}{5} \bullet 35 = 21\ см.\]
\[Ответ:\ \ 9\ см;\ 15\ см;\ 21\ см.\]
\[2)\ c^{'} - a^{'} = 16\ см:\]
\[c - a = 35 - 15 = 20.\]
\[\frac{a^{'}}{a} = \frac{b^{'}}{b} = \frac{c^{'}}{c} = k:\]
\[a^{'} = ak;\ \ \]
\[b^{'} = bk;\]
\[c^{'} = ck.\]
\[c^{'} - a^{'} = ck - ak = k(c - a)\]
\[k = \frac{c^{'} - a^{'}}{c - a} = \frac{16}{20} = \frac{4}{5}.\]
\[a^{'} = \frac{4}{5} \bullet 15 = 12\ см.\]
\[b^{'} = \frac{4}{5} \bullet 25 = 20\ см.\]
\[c^{'} = \frac{4}{5} \bullet 35 = 28\ см.\]
\[Ответ:\ \ 12\ см;\ 20\ см;\ 28\ см.\]