\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - квадрат;\]
\[CM = DM;\]
\[AK = DK.\]
\[Доказать:\]
\[\mathrm{\Delta}MDK\sim\mathrm{\Delta}BCD.\]
\[Доказательство.\]
\[1)\ ABCD - квадрат:\]
\[BD = AC;\]
\[BC = CD = AD;\]
\[\angle B = \angle D = 90{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}ADC:\]
\[AK = DK;\ \ \]
\[CM = DM.\]
\[KM - средняя\ линия:\]
\[KM = \frac{1}{2}AC = \frac{1}{2}\text{BD.}\]
\[3)\ \mathrm{\Delta}MDK - прямоугольный:\]
\[MD = KD = \frac{1}{2}BC;\]
\[\angle M = \angle K = 45{^\circ}.\]
\[4)\ \mathrm{\Delta}BCD - прямоугольный:\]
\[BC = CD;\ \ \]
\[\angle B = \angle D = 45{^\circ}.\]
\[5)\ \mathrm{\Delta}MDK\sim\mathrm{\Delta}BCD:\]
\[\frac{\text{MD}}{\text{CD}} = \frac{\text{KD}}{\text{BC}} = \frac{\text{MK}}{\text{BD}} = \frac{1}{2};\]
\[\angle CBD = \angle DKM = 45{^\circ};\]
\[\angle CDB = \angle DMK = 45{^\circ};\]
\[\angle BCD = \angle KDM = 90{^\circ}.\]
\[Что\ и\ требовалось\ доказать.\]