\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - квадрат;\]
\[B - центр\ окружности;\]
\[\angle BEC = 75{^\circ};\]
\[AB = a.\]
\[Найти:\]
\[\text{AE.}\]
\[Решение.\]
\[1)\ ABCD - квадрат:\]
\[BC = AB = a;\ \ \ \]
\[\angle ABC = 90{^\circ}.\]
\[2)\ BE = BC = AB = R = a.\]
\[3)\ \mathrm{\Delta}BEC - равнобедренный:\]
\[\angle BCE = \angle BEC = 75{^\circ};\]
\[\angle BCE + \angle BEC + \angle EBC = 180{^\circ}\]
\[75{^\circ} + 75{^\circ} + \angle EBC = 180{^\circ}\]
\[\angle EBC = 30{^\circ}.\]
\[4)\ \mathrm{\Delta}ABE - \ равнобедренный:\]
\[\angle ABE = \angle ABC - \angle EBC;\]
\[\angle ABE = 90{^\circ} - 30{^\circ} = 60{^\circ}.\]
\[\mathrm{\Delta}ABE - равносторонний:\]
\[AE = AB = BE = a.\]
\(Ответ:\ \ a.\)