\[Схематический\ рисунок.\]
\[Дано:\]
\[BK - медиана;\]
\[AM\ :MB = 4\ :3.\]
\[Найти:\]
\[1)\ OM\ :CO;\]
\[2)\ KO\ :BO.\]
\[Решение.\]
\[1)\ Проведем\ прямую:\]
\[ME \parallel BK;\ \ \ \]
\[ME \cap AC = E.\]
\[В\ \mathrm{\Delta}ABK:\]
\[ME \parallel BK;\ \ \ \]
\[\frac{\text{AM}}{\text{AE}} = \frac{\text{BM}}{\text{KE}}\]
\[\frac{\text{AE}}{\text{KE}} = \frac{\text{AM}}{\text{BM}} = \frac{4}{3}\text{\ \ \ }\]
\[AE = \frac{4}{3}\text{KE.}\]
\[В\ \mathrm{\Delta}ABC:\]
\[CK = AK = \frac{1}{2}AC;\]
\[AK = KE + AE = \frac{7}{3}KE;\]
\[KE = \frac{3}{7}AK = \frac{3}{14}\text{AC.}\]
\[В\ \mathrm{\Delta}MCE:\]
\[OK \parallel ME;\ \ \ \]
\[\frac{\text{OM}}{\text{KE}} = \frac{\text{CO}}{\text{CK}}\]
\[\frac{\text{OM}}{\text{CO}} = \frac{\text{KE}}{\text{CK}} = \frac{3}{7}.\]
\[2)\ Проведем\ прямую:\]
\[KD \parallel CM;\ \ \]
\[KD \cap AB = D.\]
\[В\ \mathrm{\Delta}AMC:\]
\[CK = AK;\ \ \ \]
\[KD \parallel CM;\]
\[MD = AD.\]
\[В\ \mathrm{\Delta}ABC:\]
\[AM = MD + AD = 2MD\]
\[AM = \frac{4}{3}\text{MB\ \ \ }\]
\[MD = \frac{2}{3}\text{MB.}\]
\[В\ \mathrm{\Delta}BKD:\]
\[OM \parallel KD;\ \ \ \]
\[\frac{\text{BO}}{\text{BM}} = \frac{\text{KO}}{\text{MD}}\]
\[\frac{\text{KO}}{\text{BO}} = \frac{\text{MD}}{\text{BM}} = \frac{2}{3}.\]
\[Ответ:\ \ 1)\ 3\ :7;\ 2)\ 2\ :3.\]