\[Схематический\ рисунок.\]
\[Дано:\]
\[BK - медиана;\]
\[BM\ :MC = 3\ :10.\]
\[Найти:\]
\[BO\ :OK.\]
\[Решение.\]
\[1)\ Проведем\ прямую:\]
\[KD \parallel AM;\ \ \]
\[KD \cap BC = D.\]
\[2)\ В\ \mathrm{\Delta}AMC:\]
\[AK = CK;\ \ \ \]
\[KD \parallel AM;\]
\[MD = CD = \frac{1}{2}MC =\]
\[= \frac{1}{2} \bullet \frac{10}{3}BM = \frac{5}{3}\text{BM.}\]
\[3)\ В\ \mathrm{\Delta}DBK:\]
\[OM \parallel KD;\ \ \]
\[\frac{\text{BO}}{\text{BM}} = \frac{\text{OK}}{\text{MD}}\]
\[\frac{\text{BO}}{\text{OK}} = \frac{\text{BM}}{\text{MD}} = \frac{3}{5}.\]
\[Ответ:\ \ BO\ :OK = 3\ :5.\]