\[Схематический\ рисунок.\]
\[Дано:\]
\[CDEF - ромб;\]
\[AE = 30\ см;\]
\[BE = 12\ см;\]
\[P_{\text{ABC}} = 105\ см.\]
\[Найти:\]
\[AC;\ BC.\]
\[Решение.\]
\[1)\ CDEF - ромб:\]
\[CE - биссектриса\ \angle C.\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[AB = AE + BE = 42;\]
\[P_{\text{ABC}} = AB + BC + AC\]
\[42 + BC + AC = 105\]
\[BC + AC = 63\ см.\]
\[CE - биссектриса\ \angle C:\]
\[\frac{\text{AE}}{\text{AC}} = \frac{\text{BE}}{\text{BC}}\text{\ \ }\]
\[AC = \frac{AE \bullet BC}{\text{BE}} =\]
\[= \frac{30 \bullet BC}{12} = 2,5BC.\]
\[BC + 2,5BC = 63\]
\[3,5BC = 63\ \]
\[BC = 18\ см.\]
\[AC = 2,5 \bullet 18 = 45\ см.\]
\[Ответ:\ \ AC = 45\ см;\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ BC = 18\ см.\]