\[Схематический\ рисунок.\]
\[Дано:\]
\[AD = 14\ см;\]
\[BC = 8\ см;\]
\[DA\bot AB;\]
\[CB\bot AB;\]
\[EF\bot AB;\]
\[DE = CE.\]
\[Найти:\]
\[\text{EF.}\]
\[Решение.\]
\[1)\ По\ теореме\ Фалеса:\]
\[DA\bot AB;\ \ \ \]
\[EF\bot AB;\ \ \ \]
\[CB\bot AB;\]
\[DA \parallel EF \parallel CB;\ \ \ \]
\[DE = CE.\]
\[\frac{\text{AF}}{\text{DE}} = \frac{\text{BF}}{\text{CE}};\ \ \ \]
\[\frac{\text{AF}}{\text{BF}} = \frac{\text{DE}}{\text{CE}} = 1.\]
\[2)\ ABCD - трапеция:\]
\[AF = BF;\ \ \ \]
\[DE = CE.\]
\[EF - средняя\ линия:\]
\[EF = \frac{1}{2}(AD + BC)\]
\[EF = \frac{1}{2}(14 + 8) = 11\ см.\]
\[Ответ:\ \ 11\ см.\]