\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - трапеция;\]
\[AB = BC = CD;\]
\[O - центр\ опис.\ окружности;\]
\[O \in AD.\]
\[Найти:\]
\[\angle A;\ \angle B;\ \angle C;\ \angle D.\]
\[Решение.\]
\[1)\ AD - диаметр;\]
\[\cup AD = 180{^\circ};\]
\[AB = BC = CD;\]
\[\cup AB = \cup BC = \cup CD.\]
\[\cup AB + \cup BC + \cup CD = \cup AD\]
\[\cup CD + \cup CD + \cup CD = 180{^\circ}\]
\[3 \cup CD = 180{^\circ}\ \ \ \]
\[\cup CD = 60{^\circ}.\]
\[\angle DAC = \frac{1}{2} \cup CD = 30{^\circ};\]
\[\angle DAC = \angle BAC = \angle CBD = 30{^\circ};\]
\[\angle ABD = \frac{1}{2} \cup AD = 90{^\circ}.\]
\[2)\ ABCD - трапеция:\]
\[\angle A = \angle D;\ \ \]
\[\angle B = \angle C;\]
\[\angle A = \angle BAC + \angle DAC = 60{^\circ};\]
\[\angle B = \angle ABD + \angle CBD = 120{^\circ}.\]
\[Ответ:\ \ 60{^\circ};\ 120{^\circ}.\]