\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - трапеция;\]
\[O - центр\ опис.\ окружности;\]
\[AB = CD;\]
\[\angle AEB = 56{^\circ};\]
\[O \in AD.\]
\[Найти:\]
\[\angle BAD;\ \angle ABC;\]
\[\angle BCD;\ \angle ADC.\]
\[Решение.\]
\[1)\ ABCD - трапеция:\]
\[AB = CD;\ \ \]
\[AE = DE;\]
\[\angle A = \angle D;\ \ \ \]
\[\angle B = \angle C.\]
\[2)\ \mathrm{\Delta}AED - равнобедренный:\]
\[\angle EAD = \angle EDA;\]
\[\angle AED = 180{^\circ} - \angle AEB = 124{^\circ};\]
\[\angle AED + \angle EAD + \angle EDA = 180{^\circ}\]
\[124{^\circ} + \angle EAD + \angle EAD = 180{^\circ}\]
\[2\angle EAD = 56{^\circ}\]
\[\angle EAD = 28{^\circ}.\]
\[3)\ \cup CD = 2\angle DAC = 56{^\circ};\]
\[\cup AB = 2\angle ADB = 2\angle DAC = \cup CD;\]
\[\cup BC = 180{^\circ} - \cup AB - \cup CD = 68{^\circ};\]
\[\angle BAC = \frac{1}{2} \cup BC = 34{^\circ}.\]
\[4)\ ABCD - трапеция:\]
\[\angle BAD = \angle BAC + \angle DAC = 62{^\circ};\]
\[\angle ABC = 180{^\circ} - \angle BAD = 118{^\circ}.\]
\[Ответ:\ \ 62{^\circ};\ 118{^\circ}.\]