\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равносторонний;\]
\[\cup AM = 2 \cup CM.\]
\[Найти:\]
\[углы\ \mathrm{\Delta}AMC.\]
\[Решение.\]
\[1)\ \mathrm{\Delta}ABC - \ равносторонний:\]
\[\angle ABC = 60{^\circ}.\]
\[2)\ \angle ABM + \angle CBM = 60{^\circ};\]
\[\frac{1}{2} \cup AM + \frac{1}{2} \cup CM = 60{^\circ}\]
\[2 \cup CM + \cup CM = 120{^\circ}\]
\[3 \cup CM = 120{^\circ}\ \ \]
\[\cup CM = 40{^\circ}.\]
\[\cup AM = 2 \bullet 40{^\circ} = 80{^\circ}.\]
\[\cup ABC = 360{^\circ} - \cup AM - \cup CM =\]
\[= 360{^\circ} - 80{^\circ} - 40{^\circ} = 240{^\circ}.\]
\[\angle CAM = \frac{1}{2} \cup CM = 20{^\circ};\]
\[\angle ACM = \frac{1}{2} \cup AM = 40{^\circ};\]
\[\angle AMC = \frac{1}{2} \cup ABC = 120{^\circ}.\]
\[Ответ:\ \ 20{^\circ};\ 40{^\circ};\ 120{^\circ}.\]