\[Схематический\ рисунок.\]
\[Дано:\]
\[AC = BD - диаметр;\]
\[\angle ABD = 80{^\circ}.\]
\[Найти:\]
\[1)\ вид\ ABCD;\]
\(2)\ \cup AB;\ \cup BC;\) \(\cup CD;\ \cup AD.\)
\[Решение.\]
\[OA = OB = OC = OD = R;\]
\[\angle ABC = \frac{1}{2} \cup AC = 90{^\circ}.\]
\[1)\ ABCD - прямоугольник:\]
\[OA = OC;\ \ \ \]
\[OB = OD;\ \ \ \]
\[\angle B = 90{^\circ}.\]
\[Отсюда:\]
\[AB = CD;\ \ \ \]
\[BC = AD.\]
\[2)\ \cup AD = 2\angle ABD = 160{^\circ};\]
\[BC = AD;\ \ \ \]
\[AB = CD;\]
\[\cup BC = \cup AD;\ \ \]
\[\cup AB = \cup CD.\]
\[\cup AB + \cup BC + \cup CD + \cup AD = 360{^\circ}\]
\[\cup AB + 160{^\circ} + \cup AB + 160{^\circ} = 360{^\circ}\]
\[2 \cup AB = 40{^\circ}\ \ \ \]
\[\cup AB = 20{^\circ}.\]
\[Ответ:\ \ прямоугольник;\ \]
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ 20{^\circ};\ 160{^\circ};\ 20{^\circ};\ 160{^\circ}.\)