\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равнобедренный;\]
\[\cup AB = 70{^\circ}.\]
\[Найти:\]
\[\angle A;\ \angle B;\ \angle C.\]
\[Решение.\]
\[1)\ \mathrm{\Delta}ABC - \ равнобедренный:\]
\[\angle BAC = \angle BCA.\]
\[2)\ \angle BAC = \angle BCA;\]
\[\cup BC = \cup AB = 70{^\circ};\]
\[\cup AB + \cup BC + \cup AC = 360{^\circ}\]
\[70{^\circ} + 70{^\circ} + \cup AC = 360{^\circ}\]
\[\cup AC = 220{^\circ}.\]
\[\angle BAC = \frac{1}{2} \cup BC = 35{^\circ};\]
\[\angle ABC = \frac{1}{2} \cup AC = 110{^\circ}.\]
\[Ответ:\ \ 35{^\circ};\ 110{^\circ};\ 35{^\circ}.\]