\[Схематический\ рисунок.\]
\[Дано:\]
\[\cup AB\ :\ \cup BC\ :\ \cup AC = 1\ :2\ :3.\]
\[Найти:\]
\[\angle A;\ \angle B;\ \angle C.\]
\[Решение.\]
\[\cup AB + \cup BC + \cup AC = 360{^\circ}\]
\[\frac{1}{2} \cup BC + \cup BC + \frac{3}{2} \cup BC = 360{^\circ}\]
\[3 \cup BC = 360{^\circ}\]
\[\cup BC = 120{^\circ}.\]
\[\cup AB = \frac{1}{2} \bullet 120{^\circ} = 60{^\circ};\]
\[\cup AC = \frac{3}{2} \bullet 120{^\circ} = 180{^\circ}.\]
\[\angle BAC = \frac{1}{2} \cup BC = 60{^\circ};\]
\[\angle ABC = \frac{1}{2} \cup AC = 90{^\circ};\]
\[\angle ACB = \frac{1}{2} \cup AB = 30{^\circ}.\]
\[Ответ:\ \ 30{^\circ};\ 60{^\circ};\ 90{^\circ}.\]