\[\boxed{\mathbf{20.\ }еуроки - ответы\ на\ пятёрку}\]
\[Схематический\ рисунок.\]
\[Дано:\ \ \]
\[AK - бисс\ \angle A;\]
\[BM - бисс\ \angle B;\]
\[\angle A = 44{^\circ};\]
\[\angle B = 56{^\circ}.\]
\[Найти:\]
\[1)\ MOKC;\]
\[2)\ AOBC.\]
\[Решение.\]
\[В\ треугольнике\ ABC:\]
\[\angle A + \angle B + \angle C = 180{^\circ};\]
\[44{^\circ} + 56{^\circ} + \angle C = 180{^\circ};\]
\[\angle C = 80{^\circ};\]
\[\angle BAK = \frac{1}{2}\angle A = 22{^\circ};\]
\[\angle ABM = \frac{1}{2}\angle B = 28{^\circ}.\]
\[В\ треугольнике\ ABK:\]
\[\angle A + \angle B + \angle K = 180{^\circ}\]
\[22{^\circ} + 56{^\circ} + \angle K = 180{^\circ}\]
\[\angle K = 102{^\circ}.\]
\[В\ треугольнике\ ABM:\]
\[\angle A + \angle B + \angle M = 180{^\circ}\]
\[44{^\circ} + 28{^\circ} + \angle M = 180{^\circ}\]
\[\angle K = 102{^\circ}.\]
\[В\ треугольнике\ ABM:\]
\[\angle A + \angle B + \angle M = 180{^\circ}\]
\[44{^\circ} + 28{^\circ} + \angle M = 180{^\circ}\]
\[\angle M = 108{^\circ}.\]
\[1)\ В\ четырехугольнике\ MOKC:\]
\[\angle K = 180{^\circ} - 102{^\circ} = 78{^\circ};\]
\[\angle M = 180{^\circ} - 108{^\circ} = 72{^\circ}.\]
\[\angle M + \angle O + \angle K + \angle C = 360{^\circ}\]
\[72{^\circ} + \angle O + 78{^\circ} + 80{^\circ} = 360{^\circ}\]
\[\angle O = 130{^\circ}.\]
\[2)\ В\ четырехугольнике\ AOBC:\]
\[\angle A + \angle O + \angle B + \angle C = 360{^\circ}\]
\[22{^\circ} + \angle O + 28{^\circ} + 80{^\circ} = 360{^\circ}\]
\[\angle O = 230{^\circ}.\]
\[Ответ:\ \ 1)\ 72{^\circ},\ 78{^\circ},\ 80{^\circ},\ 130{^\circ};\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2)\ 22{^\circ},\ 28{^\circ},\ 80{^\circ},\ 230{^\circ}.\]