\[\boxed{\mathbf{19.\ }еуроки - ответы\ на\ пятёрку}\]
\[Схематический\ рисунок.\]
\[Дано:\ \ \]
\[\angle BAC = \angle DAC;\]
\[\angle BCA = \angle DCA;\]
\[AB = 8\ см;\]
\[BC = 10\ см.\]
\[Найти:\]
\[P_{\text{ABCD}}.\]
\[Решение:\]
\[1)\ \mathrm{\Delta}ABC = \mathrm{\Delta}ADC\ по\ второму\]
\[\ признаку:\]
\[\angle BAC = \angle DAC - по\ условию;\]
\[\angle BCA = \angle DCA - по\ условию;\]
\[AC - общая\ сторона.\]
\[Следовательно:\]
\[CD = AB = 8\ см;\]
\[AD = BC = 10\ см.\]
\[2)\ P_{\text{ABCD}} = AB + BC + CD +\]
\[+ AD = 8 + 10 + 8 + 10 = 36\ см.\]
\[Ответ:\ \ 36\ см.\]