\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - квадрат;\]
\[AM = BM;\]
\[BK = CK;\]
\[CN = DN;\]
\[AP = DP.\]
\[Доказать:\]
\[MKNP - квадрат.\]
\[Доказательство.\]
\[1)\ ABCD - квадрат:\]
\[AB = BC = CD = AD;\]
\[\angle A = \angle B = \angle C = \angle D = 90{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}MAP,\ \mathrm{\Delta}MBK,\ \mathrm{\Delta}NCK,\ \mathrm{\Delta}NDP:\]
\[AM = AP = MB = BK = \frac{1}{2}AB;\]
\[CN = CK = DN = DP = \frac{1}{2}\text{AB.}\]
\[\mathrm{\Delta}MAP = \mathrm{\Delta}MBK = \mathrm{\Delta}NCK = \mathrm{\Delta}NDP:\]
\[MP = MK = KN = NP.\]
\[3)\ \mathrm{\Delta}MBK;\ \mathrm{\Delta}NCK - \ \]
\[равнобедренные:\]
\[\angle BKM = \angle CKN = \frac{1}{2} \bullet 90{^\circ} = 45{^\circ}.\]
\[4)\ MKNP - четырехугольник:\]
\[MP = MK = KN = NP:\]
\[MKNP - ромб.\]
\[\angle MKN = 180{^\circ} - 45{^\circ} - 45{^\circ} = 90{^\circ}:\]
\[MKNP - квадрат.\]
\[Что\ и\ требовалось\ доказать.\]