\[Схематический\ рисунок.\]
\[Дано:\]
\[AD = AB;\]
\[CE = BC;\]
\[DE = 18\ см;\]
\[\angle BDA = 15{^\circ};\]
\[\angle BEC = 36{^\circ}.\]
\[Найти:\]
\[\angle A;\ \angle B;\ \angle C;\]
\[P_{\text{ABC}}.\]
\[Решение.\]
\[1)\ \mathrm{\Delta}DAB - равнобедренный:\]
\[\angle ABD = \angle ADB = 15{^\circ};\]
\[\angle ADB + \angle ABD + \angle BAD = 180{^\circ}\]
\[15{^\circ} + 15{^\circ} + \angle BAD = 180{^\circ}\]
\[\angle BAD = 150{^\circ}.\]
\[2)\ \mathrm{\Delta}ECB - равнобедренный:\]
\[\angle CBE = \angle CEB = 36{^\circ};\]
\[\angle CBE + \angle CEB + \angle ECB = 180{^\circ}\]
\[36{^\circ} + 36{^\circ} + \angle ECB = 180{^\circ}\]
\[\angle ECB = 108{^\circ}.\]
\[3)\ В\ \mathrm{\Delta}ABC:\]
\[\angle A = 180{^\circ} - \angle BAD = 30{^\circ};\]
\[\angle C = 180{^\circ} - \angle ECB = 72{^\circ};\]
\[\angle A + \angle B + \angle C = 180{^\circ}\]
\[30{^\circ} + \angle B + 72{^\circ} = 180{^\circ}\]
\[\angle B = 78{^\circ}.\]
\[P_{\text{ABC}} = AB + BC + AC;\]
\[P_{\text{ABC}} = DA + CE + AC;\]
\[P_{\text{ABC}} = DE = 18\ см.\]
\[Ответ:\ \ 30{^\circ};\ 72{^\circ};\ 78{^\circ};\ 18\ см.\]