\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - ромб;\]
\[\angle DAC\ :\angle ADB = 2\ :7.\]
\[Найти:\]
\[\angle A;\ \angle B;\ \angle C;\ \angle D.\]
\[Решение.\]
\[1)\ ABCD - ромб:\]
\[\angle A = \angle C;\ \ \ \]
\[\angle B = \angle D;\]
\[AC - биссектриса\ \angle A;\]
\[\angle A = 2\angle DAC.\]
\[BD - биссектриса\ \angle D;\]
\[\angle D = 2\angle ADB.\]
\[AC\bot BD.\]
\[2)\ \mathrm{\Delta}AOD - прямоугольный:\]
\[\angle DAO + \angle ADO = 90{^\circ}\]
\[\frac{2}{7}\angle ADO + \angle ADO = 90{^\circ}\]
\[2\angle ADO + 7\angle ADO = 630{^\circ}\]
\[9\angle ADO = 630{^\circ}\ \ \]
\[\angle ADO = 70{^\circ}.\]
\[\angle DAO = \frac{2}{7} \bullet 70{^\circ} = 20{^\circ}.\]
\[\angle A = 2 \bullet 20{^\circ} = 40{^\circ}.\]
\[\angle B = 2 \bullet 70{^\circ} = 140{^\circ}.\]
\[Ответ:\ \ 40{^\circ};\ 140{^\circ}.\]