\[Схематический\ рисунок.\]
\[Дано:\]
\[\angle A = \angle CBD;\]
\[1)\ \angle ADB = \angle CDB;\]
\[2)\ \angle ADB = \angle DCB.\]
\[Найти:\]
\[\angle ABC.\]
\[Решение.\]
\[1)\ Сумма\ смежных\ углов:\]
\[\angle ADB + \angle CDB = 180{^\circ}\]
\[\angle ADB + \angle ADB = 180{^\circ}\]
\[2\angle ADB = 180{^\circ}\]
\[\angle ADB = 90{^\circ}.\]
\[\mathrm{\Delta}CDB - прямоугольный:\]
\[\angle BCD + \angle CBD = 90{^\circ};\]
\[\angle C + \angle A = 90{^\circ}.\]
\[В\ \mathrm{\Delta}ABC:\]
\[\angle A + \angle B + \angle C = 180{^\circ}\]
\[\angle B + 90{^\circ} = 180{^\circ}\]
\[\angle B = 90{^\circ}.\]
\[2)\ Сумма\ смежных\ углов:\]
\[\angle ADB + \angle CDB = 180{^\circ}\]
\[\angle CDB = 180{^\circ} - \angle ADB\]
\[\angle CDB = 180{^\circ} - \angle DCB.\]
\[В\ \mathrm{\Delta}CDB:\]
\[\angle CDB + \angle CBD + \angle DCB = 180{^\circ}\]
\[180{^\circ} - \angle DCB + \angle CBD + \angle DCB = 180{^\circ}\]
\[\angle CBD = 180{^\circ} - 180{^\circ} = 0{^\circ}.\]
\[Ответ:\ \ 90{^\circ}.\]