\[Схематический\ рисунок.\]
\[Дано:\]
\[AK - биссектриса\ \angle A;\]
\[BM - биссектриса\ \angle B;\]
\[\angle AOM = 74{^\circ}.\]
\[Найти:\]
\[\angle C.\]
\[Решение.\]
\[1)\ Сумма\ смежных\ углов:\]
\[\angle AOB + \angle AOM = 180{^\circ}\]
\[\angle AOB + 74{^\circ} = 180{^\circ}\]
\[\angle AOB = 106{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}AOB:\]
\[\angle OAB + \angle OBA + \angle AOB = 180{^\circ}\]
\[\frac{1}{2}\angle A + \frac{1}{2}\angle B + 106{^\circ} = 180{^\circ}\]
\[\frac{1}{2}(\angle A + \angle B) = 74{^\circ}\]
\[\angle A + \angle B = 148{^\circ}.\]
\[3)\ В\ \mathrm{\Delta}ABC:\]
\[\angle A + \angle B + \angle C = 180{^\circ}\]
\[148{^\circ} + \angle C = 180{^\circ}\]
\[\angle C = 32{^\circ}.\]
\[\mathbf{Ответ}\mathbf{:}\ \ 32{^\circ}.\]