Решебник по геометрии 8 класс Мерзляк Задание 101

Авторы:
Год:2023
Тип:учебник

Задание 101

\[Рисунок\ в\ учебнике.\]

\[Дано:\]

\[ABCD - параллелограмм;\]

\[\angle BCP = \angle DAE.\]

\[Доказать:\]

\[APCE - параллелограмм.\]

\[Доказательство.\]

\[1)\ ABCD - параллелограмм:\]

\[AD \parallel BC;\ \ \]

\[AD = BC.\]

\[2)\ Для\ прямых\ \text{AD\ }и\ \text{BC\ }и\ \]

\[секущей\ BD:\]

\[\angle DBC = \angle BDA.\]

\[3)\ \mathrm{\Delta}BPC = \mathrm{\Delta}DEA - по\ второму\ \]

\[признаку:\]

\[\angle PBC = \angle EDA.\]

\[Отсюда:\]

\[CP = AE;\ \ \]

\[\angle BPC = \angle DEA.\]

\[4)\ Для\ прямых\ \text{CP\ }и\ \text{AE\ }и\ \]

\[секущей\ BD:\ \]

\[\angle CPE = 180{^\circ} - \angle BPC;\]

\[\angle AEP = 180{^\circ} - \angle DEA;\]

\[\angle CPE = \angle AEP.\]

\[CP \parallel AE.\]

\[5)\ APCE - четырехугольник:\]

\[CP \parallel AE;\ \ \ \]

\[CP = AE.\]

\[Отсюда:\]

\[APCE - параллелограмм.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам