\[\boxed{\mathbf{987.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[ABCD - ромб;\]
\[AC = 2a;\]
\[BD = 2b;\]
\[AM^{2} + DM^{2} = BM^{2} + CM^{2}.\]
\[\mathbf{Найти:}\]
\[множество\ точек\ \text{M.}\]
\[\mathbf{Решение.}\]
\[1)\ Введем\ систему\ координат:\]
\[AC \in OX;BD \in OY;\]
\[A( - a;0);C(a;0);B(0;b);\]
\[D(0; - b);M(x;y).\]
\[2)\ AM^{2} = (x + a)^{2} + y^{2};\]
\[DM^{2} = x^{2} + (b + y)^{2};\]
\[BM^{2} = x^{2} + (b - y)^{2};\]
\[CM^{2} = (a - x)^{2} + y^{2}.\]
\[3)\ (x + a)^{2} + y^{2} + x^{2} + (b + y)^{2} =\]
\[= x^{2} + (b - y)^{2} + (a - x)^{2} + y^{2}\]
\[2ax + 2by = - 2by - 2ax\]
\[4ax = - 4by\]
\[ax = - by.\]
\[y = - \frac{a}{b}\text{x.\ }\]
\[4)\ Множество\ всех\ точек\ M:\]
\[прямая,\ проходящяя\ через\ \]
\[начало\ координат.\]
\[5)\ Зададим\ прямую\ AB:\]
\[\frac{x - x_{1}}{x_{2} - x_{1}} = \frac{y - y_{1}}{y_{2} - y_{1}}\]
\[\frac{x + a}{0 + a} = \frac{(y - 0)}{b - 0}\]
\[\frac{x + a}{a} = \frac{y}{b}\]
\[ay = bx + ab\ \ \ \]
\[y = \frac{b}{a}x + b.\]
\[6)\ k_{1} \bullet k_{2} = - 1 - прямые\ \]
\[перпендикулярны.\]
\[k_{1} = - \frac{a}{b};\]
\[k_{2} = \frac{b}{a} \Longleftrightarrow \ - \frac{a}{b} \bullet \frac{b}{a} = - 1;\]
\[y = - \frac{a}{b}x - прямая,\ \]
\[перпендикулярная\ стороне\ \]
\[ромба.\ \]
\[\boxed{\mathbf{987}\mathbf{.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\mathbf{\ задачи:}\]
\[\mathbf{Дано:}\]
\[ABCD - равнобедренная\ \]
\[трапеция;\]
\[BH - перпендикуляр\ к\ AD;\ \]
\[AB = CD;\]
\[HD = 7\ см.\]
\[\mathbf{Найти:}\]
\[MN - ?\]
\[\mathbf{Решение.}\]
\[1)\ По\ определению\ средней\ \]
\[линии\ трапеции:\]
\[MN = \frac{1}{2} \bullet (AD + BC).\]
\[2)\ MN - средняя\ линия\ \]
\[трапеции:\]
\[MS - средняя\ линия\ \]
\[треугольника\ \text{ABH.}\]
\[Откуда:\]
\[MS = \frac{1}{2}\text{AH.}\]
\[3)\ PN - средняя\ линия\ \]
\[треугольника\ CFD:\]
\[PN = \frac{1}{2}\text{FD.}\]
\[4)\ \mathrm{\Delta}ABH = \mathrm{\Delta}CFD\ по\ \]
\[гипотенузе\ и\ катету;\]
\[по\ свойству\ равных\ \]
\[треугольников:\]
\[AH = FD.\]
\[5)\ Из\ пункта\ 2\ \ получаем:\]
\[2MS = AH.\]
\[Из\ пункта\ 3:\ \ 2PN = FD.\]
\[Из\ пункта\ 4:\ \ AH = FD.\]
\[Получаем:\ \ \]
\[M = PN;\ \ \]
\[FD = 5M + PN.\]
\[6)\ По\ определению\ \]
\[прямоугольника:\]
\[SP = HF.\]
\[7)\ Теперь\ находим\ среднюю\ \]
\[линию\ трапеции:\ \]
\[MN = MS + SP + PN =\]
\[= FD + HF = HD = 7\ см.\]
\[Ответ:MN = 7\ см.\]