\[\boxed{\mathbf{908.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[ABCD - четырехугольник;\]
\[M,N,P,Q - середины;\]
\[MP \cap NQ = O;\]
\[AE = EC;\]
\[BF = FD.\]
\[\mathbf{Доказать:}\]
\[O \in EF.\]
\[\mathbf{Доказательство.}\]
\[1)\ Определим\ вид\ \text{MNPQ.}\]
\[Пусть\ \overrightarrow{\text{AM}} = \overrightarrow{\text{MB}} = \overrightarrow{a},\]
\[\ \overrightarrow{\text{BN}} = \overrightarrow{\text{NC}} = \overrightarrow{b};\ \overrightarrow{\text{CP}} = \overrightarrow{\text{PD}} = \overrightarrow{c},\]
\[\ \overrightarrow{\text{DQ}} = \overrightarrow{\text{QA}} = \overrightarrow{d}:\]
\[\overrightarrow{\text{AB}} = \overrightarrow{\text{AD}} + \overrightarrow{\text{DC}} + \overrightarrow{\text{CB}}\]
\[2\overrightarrow{a} = - 2\overrightarrow{d} - 2\overrightarrow{c} - 2\overrightarrow{b}\]
\[\overrightarrow{a} + \overrightarrow{b} = - \left( \overrightarrow{c} + \overrightarrow{d} \right).\]
\[Отсюда:\ \]
\[\overrightarrow{\text{MN}} = - \overrightarrow{\text{QP}} = \overrightarrow{\text{PQ}};\]
\[MN \parallel QP\ и\ MN = QP;\ \]
\[MNPQ - параллелограмм.\]
\[2)\ Получаем:\ \]
\[\overrightarrow{\text{MN}} = \overrightarrow{\text{QP}} = \overrightarrow{m},\ \]
\[\overrightarrow{\text{NP}} = \overrightarrow{\text{MQ}} = \overrightarrow{n},\ \]
\[\overrightarrow{\text{MO}} = \overrightarrow{\text{OP}} = \overrightarrow{p},\]
\[\overrightarrow{\text{NO}} = \overrightarrow{\text{OQ}} = \overrightarrow{q}.\]
\[3)\ В\ треугольнике\ ABD:\]
\[MQ - средняя\ линия \Longrightarrow \ \]
\[\overrightarrow{\text{BD}} = 2\overrightarrow{\text{MQ}} = 2\overrightarrow{n};\]
\[\overrightarrow{\text{BF}} = \overrightarrow{\text{FD}} = \overrightarrow{n}.\]
\[4)\ В\ треугольнике\ ABC:\]
\[MN - средняя\ линия \Longrightarrow\]
\[\overrightarrow{\text{AC}} = 2\overrightarrow{\text{MN}} = 2\overrightarrow{m};\]
\[\overrightarrow{\text{AE}} = \overrightarrow{\text{EC}} = \overrightarrow{m}.\]
\[5)\ \overrightarrow{\text{EO}} = \overrightarrow{\text{AO}} - \overrightarrow{\text{AE}} =\]
\[= \left( \overrightarrow{\text{AM}} + \overrightarrow{\text{MO}} \right) - \overrightarrow{\text{AE}} =\]
\[= \overrightarrow{a} + \overrightarrow{p} - \overrightarrow{m};\]
\[\overrightarrow{\text{OF}} = \overrightarrow{\text{BF}} - \overrightarrow{\text{BO}} =\]
\[= \overrightarrow{\text{BF}} - \left( \overrightarrow{\text{BN}} + \overrightarrow{\text{NO}} \right) =\]
\[= \overrightarrow{n} - \left( \overrightarrow{n} + \overrightarrow{q} \right).\]
\[\overrightarrow{\text{EO}} - \overrightarrow{\text{OF}} =\]
\[= \overrightarrow{a} + \overrightarrow{p} - \overrightarrow{m} - \left( \overrightarrow{n} - \left( \overrightarrow{b} + \overrightarrow{q} \right) \right) =\]
\[= \overrightarrow{a} + \overrightarrow{b} - \left( \overrightarrow{m} + \overrightarrow{n} \right) + \overrightarrow{p} + \overrightarrow{q} =\]
\[= \overrightarrow{m} - \overrightarrow{m} - \overrightarrow{n} + \overrightarrow{n} = \overrightarrow{0}.\]
\[6)\ Таким\ образом:\ \]
\[\overrightarrow{\text{EO}} = \overrightarrow{\text{OF}} \Longrightarrow \ O \in EF.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{908.еуроки - ответы\ на\ пятёрку}}\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}ABC;\]
\[AA_{1},BB_{1},CC_{1}\]
\[- биссектрис;\]
\[C_{2}B_{2}\bot AA_{2};\]
\[A_{2}C_{2}\bot BB_{2};\]
\[A_{2}B_{2}\bot CC_{2}.\]
\[\mathbf{Доказать:}\]
\[A_{2} \in AA_{1};\]
\[B_{2} \in BB_{1}.\]
\[\mathbf{Доказательство.}\]
\[1)\ Прямые,\ перпендикулярные\ \]
\[к\ биссектрисам\ внутренних\ \]
\[углов,являются\ \]
\(биссектрисами\)
\[соответствующих\ внешних\ \]
\[углов:\]
\[A_{2}B_{2} - биссектриса\ внешнего\ \]
\[\angle C;\]
\[A_{2}C_{2} - биссектриса\ внешнего\ \]
\[\angle B;\]
\[B_{2}C_{2} - биссектриса\ внешнего\ \]
\[\angle\text{A.}\]
\[2)\ Каждая\ точка\ биссектрисы\]
\[\ угла\ равноудалена\ от\ сторон,\ \]
\[которые\ его\ образуют:\]
\[B_{2} \in B_{2}C_{2}\ и\ A_{2}B_{2},\ то\ есть\ B_{2}\ \]
\[равноудалена\ от\ AB\ и\ BC;\]
\[аналогично - \ для\ A_{2}\ и\ C_{2}.\]
\[3)\ Значит:\ \]
\[A_{2} \in AA_{1};\]
\[B_{2} \in BB_{1};\]
\[C_{2} \in CC_{1}.\]
\[Что\ и\ требовалось\ доказать.\]