\[\boxed{\mathbf{822.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\mathbf{\ задачи:}\]
\[\mathbf{Дано:}\]
\[ABCD - параллелограмм;\]
\[\text{ADD}_{1}A;ABB_{2}A_{2};\]
\[\text{BC}C_{1}B_{1};\ \ CDD_{2}C_{2} - квадраты;\]
\[E = AB_{2} \cap BA_{2};\]
\[F = BC_{1} \cap CB_{1};\]
\[G = CD_{2} \cap DC_{2};\]
\[H = AD_{1} \cap DA_{1}.\]
\[\mathbf{Доказать:}\]
\[EFGH - квадрат.\]
\[\mathbf{Доказательство.}\]
\[1)\ ABCD - параллелограмм \Longrightarrow\]
\[\Longrightarrow AB = CD;\ \ AD = BC:\]
\[AE = EB = CG = GD;\]
\[BF = FC = AH = HD.\]
\[2)\ Допустим,\ что\ \angle A = \angle C = a;\ \ \]
\[\angle B = \angle D = 180{^\circ} - a.\ \ \]
\[Тогда:\]
\[\angle EBF = 360 - (2 \bullet 45 + \angle B) =\]
\[= 90{^\circ} + a;\]
\[\angle FCG = a + 2 \bullet 45 = 90{^\circ} + a;\]
\[\angle GDH = 360 - (2 \bullet 45 + \angle B) =\]
\[= 90{^\circ} + a;\]
\[\angle HAE = a + 2 \bullet 45 = 90{^\circ} + a.\]
\[3)\ Получаем:\]
\[AE = EB = CG = GD;\]
\[BF = FC = AH = HD;\]
\[\angle HAE = \angle EBF = \angle ECG =\]
\[= \angle GDH = 90{^\circ} + a.\]
\[По\ первому\ признаку\ \]
\[равенства\ треугольников:\]
\[\mathrm{\Delta}HAE = \mathrm{\Delta}FBE = \mathrm{\Delta}ECG = \mathrm{\Delta}HDG.\]
\[Отсюда:\]
\[HE = EF = FG = GH;\]
\[EFGH - ромб.\]
\[4)\ У\ ромба\ \text{EFGH\ }найдем\ \]
\[угол\ \text{E.}\]
\[\angle AEB = 90{^\circ};\ \mathrm{\Delta}HAE = \mathrm{\Delta}FBE:\]
\[\text{\ \ }\angle AEH = \ \angle BEF.\]
\[Следовательно:\]
\[\ \angle E = \ \]
\[= \angle AEB + \ \angle BEF - \ \angle AEH =\]
\[= 90{^\circ}.\]
\[5)\ Остальные\ углы\ ромба\ \]
\[ромба:\]
\[\ \angle G = \ \angle E = 90{^\circ};\]
\[\ \angle F = \ \angle H = 180{^\circ} - 90{^\circ} = 90{^\circ}.\]
\[6)\ Ромб\ со\ всеми\ прямыми\]
\[углами - это\ квадрат.\]
\[\ EFGH - квадрат.\]
\[\mathbf{Что\ и\ требовалось\ доказать.}\]
\[\boxed{\mathbf{822.еуроки - ответы\ на\ пятёрку}}\]
\[Доказательство.\]
\[\cup C_{1}A = 2 \cdot \angle BCC_{1} = \angle BCA;\]
\[\cup B_{1}A = 2 \cdot \angle B_{1}BA = \angle ABC;\]
\[\cup BA_{1} = 2 \cdot \angle BAA_{1} = \angle BAC.\]
\[Отсюда:\]
\[\cup C_{1}A_{1} = \angle ACB + \angle BAC =\]
\[= 180º - \angle ABC.\]
\[Угол\ между\ прямыми\ AA_{1}\ и\ \]
\[C_{1}B_{1} = \frac{1}{2}\left( \cup C_{1}A_{1} + \cup AB_{1} \right) =\]
\[= \frac{180}{2} = 90{^\circ}.\]
\[Следовательно:\]
\[AA_{1}\bot C_{1}B_{1}.\]
\[Аналогично\ доказываем:\]
\[BB_{1}\bot A_{1}C_{1};\]
\[CC_{1}\bot A_{1}B_{1}.\]
\[Что\ и\ требовалось\ доказать.\]