\[\boxed{\mathbf{707.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}ABC - равнобедренный\ \]
\[вписанный\ в\ окружность;\]
\[AB = BC = 8\ см;\]
\[\angle ABC = 120{^\circ}.\]
\[\mathbf{Найти:}\]
\[d - ?\]
\[\mathbf{Решение.}\]
\[1)\ \mathrm{\Delta}ABC - равнобедренный:\]
\[\angle BCA = \angle BAC = \frac{180{^\circ} - 120{^\circ}}{2} =\]
\[= \frac{60{^\circ}}{2} = 30{^\circ}.\]
\[2)\ \angle BCA = \frac{1}{2} \cup AB:\ \]
\[3)\ \angle AOB = \cup AB =\]
\[= 60{^\circ}\ (как\ центральный\ угол).\]
\[4)\ \mathrm{\Delta}AOB - равнобедренный:\]
\[AO = OB = r.\]
\[Отсюда:\ \]
\[\angle BAO = \angle ABO = \frac{180{^\circ} - 60{^\circ}}{2} =\]
\[= \frac{120{^\circ}}{2} = 60{^\circ};\]
\[\mathrm{\Delta}AOB - равносторонний.\]
\[5)\ AO = OB = AB = 8\ см;\]
\[d = 2AO = 16\ см.\]
\[Ответ:d = 16\ см.\]
\[\boxed{\mathbf{707.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[ABCD - ромб;\]
\[AC = 2;\]
\[BD = 2\sqrt{3}.\]
\[\mathbf{Найти:}\]
\[\angle A - ?\]
\[\angle B - ?\]
\[\mathbf{Решение.}\]
\[1)\ ABCD - ромб.\ По\ свойству\ \]
\[диагоналей\ ромба:\]
\[AO = OC = 2\ :2 = 1;\]
\[BO = OD = 2\sqrt{3}\ :2 = \sqrt{3}.\]
\[2)\ \mathrm{\Delta}AOB - прямоугольный:\]
\[tg\ \angle BAO = \frac{\text{BO}}{\text{AO}} = \frac{\sqrt{3}}{1} = \sqrt{3};\]
\[\ \angle BAO = 60{^\circ}.\]
\[3)\ \angle ABO = 90{^\circ} - 60{^\circ} = 30{^\circ}.\]
\[4)\ По\ свойству\ диагоналей\ \]
\[ромба:\]
\[\text{AC\ }и\ BD - биссектрисы\ \]
\[\angle A\ и\ \angle B.\]
\[Отсюда:\ \]
\[\angle A = 2\angle BAO = 120{^\circ};\]
\[\angle B = 2\angle ABO = 60{^\circ}.\]
\[5)\ По\ определению\ ромба:\]
\[\angle A = \angle C = 120{^\circ};\ \]
\[\angle B = \angle D = 60{^\circ}.\ \]
\[\mathbf{Ответ:}\angle A = \angle C = 120{^\circ};\ \]
\[\angle B = \angle D = 60{^\circ}.\]